instruction scheduling with topological sorting of a DAG

// A C++ program to print topological sorting of a DAG
#include<iostream>
#include <list>
#include <stack>
using namespace std;

// Class to represent a graph
class Graph
{
int V; // No. of vertices'

// Pointer to an array containing adjacency listsList
list<int> *adj;

// A function used by topologicalSort
void topologicalSortUtil(int v, bool visited[], stack<int> &Stack);
public:
Graph(int V); // Constructor

// function to add an edge to graph
void addEdge(int v, int w);

// prints a Topological Sort of the complete graph
void topologicalSort();
};

Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}

void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to vĂ¢€™s list.
}

// A recursive function used by topologicalSort
void Graph::topologicalSortUtil(int v, bool visited[],
stack<int> &Stack)
{
// Mark the current node as visited.
visited[v] = true;

// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
topologicalSortUtil(*i, visited, Stack);

// Push current vertex to stack which stores result
Stack.push(v);
}

// The function to do Topological Sort. It uses recursive
// topologicalSortUtil()
void Graph::topologicalSort()
{
stack<int> Stack;

// Mark all the vertices as not visited
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;

// Call the recursive helper function to store Topological
// Sort starting from all vertices one by one
for (int i = 0; i < V; i++)
if (visited[i] == false)
topologicalSortUtil(i, visited, Stack);

// Print contents of stack
while (Stack.empty() == false)
{
cout << Stack.top() << " ";
Stack.pop();
}
}

// Driver program to test above functions
int main()
{
// Create a graph given in the above diagram
Graph g(6);
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);

cout << "Following is a Topological Sort of the given graph \n";
g.topologicalSort();

return 0;
}

/*
Following is a Topological Sort of the given graph
5 4 2 3 1 0
--------------------------------
Process exited after 0.02022 seconds with return value 0
Press any key to continue . . .

*/

Popular posts from this blog

DDL DML DCL and TCL

Implementation of Calculator using lex and yacc

A Register Allocation algorithm that translates the given code into one with a fixed number of registers.