Armstrong's axioms

Armstrong's axioms are a set of axioms (or, more precisely, inference rules) used to infer all the functional dependencies on a relational database. They were developed by William W. Armstrong in his 1974 paper.The axioms are sound in generating only functional dependencies in the closure of a set of functional dependencies (denoted as ) when applied to that set (denoted as ). They are also complete in that repeated application of these rules will generate all functional dependencies in the closure .


Axioms 

Let  be a relation scheme over the set of attributes .   denotes any subset of  and, for short, the union of two sets of attributes  and  denoted by  instead of the usual ; this notation is rather standard in database theory when dealing with sets of attributes.

Axiom of reflexivity

If  is a set of attributes and  is a subset of , then  holds . Hereby,  holds  [] means that  functionally determines .
If  then .

Axiom of augmentation

If  holds  and  is a set of attributes, then  holds . It means that attribute in dependencies does not change the basic dependencies.
If , then  for any .

Axiom of transitivity

If  holds  and  holds , then  holds .
If  and , then .



Reference: https://en.wikipedia.org/wiki/Armstrong%27s_axioms

Popular posts from this blog

DDL DML DCL and TCL

Implementation of Calculator using lex and yacc

A Register Allocation algorithm that translates the given code into one with a fixed number of registers.