//C++ Code for adjacency matrix representation of graph and traversal on it .(DFS,Non-recursive //DFS and BFS)

 #include<iostream>
//#include<queue>
//#include<stack>

using namespace std;
class graph
{int G[10][10],n;
int visit[10];
public:
void create();
void bfs();
void dfs(int);
void dfs1();
};
class stack
{
int st[10];

public:
int top,v1;
stack()
{
top=-1;
}
void push(int v1)
{
st[++top]=v1;
}
int pop()
{
v1=st[top];
top--;
return v1;
}
};
class queue
{

public:
int Q[10],v;
int f,r;
queue()
{
f=-1;
r=-1;
}
void insert(int v)
{
if(f==-1&&r==-1)
{
f=0;r=0;
Q[r]=v;
}
else{
r++;
Q[r]=v;
}

}
int del()
{
v=Q[f];
f++;
return v;
}
};
void graph::create()
{int e,i,j,v1,v2;
cout<<"enter the no.of vertices";
cin>>n;
cout<<"enter the no.of edges";
cin>>e;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{

G[i][j]=0;
visit[i]=0;
}
for(i=1;i<=e;i++)
{

cout<<"enter the edge";
cin>>v1>>v2;
G[v1][v2]=G[v2][v1]=1;
}

}
void graph::bfs()
{
int v1;
cout<<"enter the starting vertex";
cin>>v1;
int v2,temp;
visit[v1]=1;
queue q;

q.insert(v1);
// cout<<v1;
while(q.f<=q.r)
{
v1=q.del();
cout<<v1;
for(v2=1;v2<=n;v2++)
{
if(G[v1][v2]==1&&visit[v2]==0)
{
//temp=q.r;
// ++temp;
//q.Q[++q.r]=v2;
q.insert(v2);
visit[v2]=1;
}}

}
}
void graph::dfs(int v1)
{int v2;
cout<<v1;
visit[v1]=1;
for(v2=1;v2<=n;v2++)
if(G[v1][v2]==1&&visit[v2]==0)
dfs(v2);

}
void graph::dfs1()
{
int v1;
cout<<"enter the starting vertex";
cin>>v1;
stack s;//
int v2;
s.push(v1);

while(s.top!=-1)
{
v1=s.pop();
if(visit[v1]==0)
{

cout<<v1;
visit[v1]=1;
}
for(v2=1;v2<=n;v2++)
if(G[v1][v2]==1&&visit[v2]==0)
s.push(v2);
}
}
int main()
{
graph g; int v;
g.create();
g.bfs();
cout<<"enter the starting vetex";
cin>>v;
g.dfs(v);
g.dfs1();

}

Popular posts from this blog

DDL DML DCL and TCL

Implementation of Calculator using lex and yacc

A Register Allocation algorithm that translates the given code into one with a fixed number of registers.